
Black & White 2
Vortex

Created By: Willy
Date: July 23 2018

Version Changes Date

0 Initial Release July 23 2018

Table of Contents
Introduction..2
Features..3

Object Categories..4
Limitations...11

Using the Script..12
Adding to Your Project..12
Interface...12

Creating The Vortex..13
Cloud Settings...14
Vortex Settings..14
Scroll Setting..14
Moving to the Next Land..15
Debug Version..15

Known Bugs...15
Global Bug..15
Rock Launching Issue...16

Conclusion...17

Introduction

What is Black & White 2 (BW2) is missing? Well a lot of things, but I am focusing on one thing
featured prominently in the original Black and White (BW) game. The feature I’m referring to is the
vortex, a large portal which appears after winning each land. The player could throw any object into it,
and that object would then come out of the vortex on the next land. Basically the vortex in BW allowed
the player to move stuff from one land to the next. You could send food, wood, people, miracle seeds,
rocks, trees, any mobile object. When used effectively the vortex is extremely helpful in completing
BW.

A big issue with BW2 is the fact that the vortex as seen in BW doesn’t exist. There is a portal which
appears when a land is complete. This portal like the vortex takes the player to the next land, but that is
it. The player cannot throw objects into it and have that same object re-appear on the other side. The
vortex in BW doesn’t exists in BW2, in fact adding a vortex to BW2 was never the plan of Lion Head.
No, instead the player was going to use ships to move objects to the next land. If you look at the
original scripts for BW2 you can find code referring to this, for example in the
Land1IslandDeparture.txt line 12:
say "It will ask you to check you have filled your boats for the trip..."
It is obvious then that they ran out of time and had to scrap this feature. Leaving BW2 without such an
important feature, the vortex.

The purpose of this project was to find a way to re-create a vortex for BW2 capable of moving objects
to the next land. At first the prospect of accomplishing this seemed impossible, there was no obvious
way to save information on one land and read it on the following. But when the original scripts were
released thanks to Handsome_Matt of bwFiles, we discovered a way.

In order to solve the issue of sending data across lands, there was one obvious place to start. In BW2
during the second land (Greek homeland) the player has to save a group of people by placing them in a
portal! Those people then appeared walking out of the portal on the following land. This was exactly
what the vortex script needed to accomplish. But the programmers at lion head cheated, in their script
they simply create 10 random people on the 3rd land. In their code the player places 10 people into the
portal, they simply delete that person, their information isn’t saved or remember on the next land. The
scripts involved with moving from land 2 to land 3 seemed to be a dead end.

There is a script located in the file
Land3Intro.txt called BenchCarryingDude. It
turns out that this script is an unknown secret
Easter-egg in BW2. In land 2 during the second
group the player is attempting to save, there is a
bench beside one of the houses, if the player
throws that bench into the portal then this script
BenchCarryingDude is run which creates an
extra villager carrying the bench. The only way
this is possible is if there is data being sent from
land 2 to land 3! Looking through the scripts

three lines of code were found:
persistent data "SPESHUL_BENCH" == 1
set persistent data "SPESHUL_BENCH" to 1
set persistent data "SPESHUL_BENCH" to 0
It turns out that persistent data is global to all lands. This was the key to finally creating a working
vortex.

Now this way of saving data is quite limiting, and we imagine that this was not the way they were
planning on implementing the fleet of ships. The commands use strings to refer to the data, but the
scripting language does not provide anyway to edit strings. There is no way to dynamically add data,
which means everything has to be hard coded. A vortex script like this one is much more limited then
that of the one in BW. But it is possible, and now has been done.

The scripts provided contain the code required for a vortex in BW2. The files provided are not actual
BW2 challenge files, you cannot take these files copy them somewhere and have vortexes appear in
BW2. These files are script files which other modelers of BW2 can take and use in their own lands, I
will leave it to some other brave soul to add these scripts to the original BW2 lands. This
documentation is here for those who want to use these scripts on their lands, it will explain how to
work with this vortex, what its limitations are, and what bugs I know of.

Features

This section explains the limitations of the vortex, or more specifically what objects it will accept and
re-create on the other side, and what objects it does not. There are two types of vortexes:

1. Exiting - The vortex responsible for leaving the land, looks for objects around it, if one is found
save the needed data and delete it.

2. Entering - The vortex responsible for entering a land, takes the objects saved by the exiting
vortex and re-creates them.

Looking at all the objects in BW2 we can split them up into three categories:
1. Accepted - The exiting vortex can read the required data about the object and delete it. That

object will be successfully re-created by the entering vortex on the next land.
2. Unaccepted - The exiting vortex cannot find or read the data needed about the object for re-

creation. Or I was too lazy or found it unnecessary to code this object in.
3. Semi-Accepted - The exiting vortex can read required data about the object and delete it. But

the entering vortex cannot re-created due to that object just not being coded in.

Lets look at some examples. lets say the player places a tree at the vortex, the code can identify that
object as a tree, but for it to be re-created by the entering vortex we need to know what type of tree it is.
To do that I use the command:
subType = variable get treeObj sub type
This returns a value from 0-10, if you look in the header file TreeInfoEnum.h found in the Script
Compiler files you’ll see what type of tree the numbers refer to.
Knowing that this is a tree and what type of tree it is we can re-create it, and therefor a tree falls into
the accepted category.

Now imagine the player threw a tree and the tree landed on its side, the game considers that tree to be
of the type dead tree. The issue is that the sub type command will always return a value of 9999 no

matter what type of tree it is. The code cannot read the sub type of dead trees! Therefore the code
cannot gather the needed information to re-create. A dead tree must then fall under the category of
unaccepted.

Imagine the player places a villager. This villager is an Egyptian Assassin (which is a possible type in
BW2). The code will id this object as a villager, will be able to read the sub type as an Egyptian
assassin. The villager will be deleted by the exiting vortex, but the information regarding this villager
will not be saved as the code needed to re-create this villager doesn’t exist for the entering vortex. This
would be an example of a semi-accepted object. It will be deleted by the exiting vortex but will not be
re-created by the entering.

The exiting vortex records the information needed for re-creation in a large array called data1. When
the scroll is clicked the array is copied into the persistent data. The entering vortex then takes the
persistent data and copies it into the array data1. The scripts then work directly with the array rather
then consistently reading the persistent data. The reasoning behind this code design was to work around
am issue within the persistent data, see section Known Bugs.

Now lets run through all the objects the vortex will accept.

Object Categories

Object Accepted Unaccepted Semi-accepted

Trees

Beech

Spruce

Cedar

Oak

Olive

Pine

Acacia

Palm

Big Palm

Fir

Maple

Rocks

Small Norse Rock

Medium Norse Rock

Large Norse Rock

Rock

Boulder Round

Medium Boulder Round

Large Boulder Round

Boulder Small

Boulder Big

Boulder Tiny

Boulder Huge

Boulder Massive

Elipsoid Small

Elipsoid Big

Elipsoid Tiny

Elipsoid Huge

Elipsoid Massive

Sharp Small

Sharp Big

Sharp Tiny

Sharp Huge

Sharp Massive

Eroded Small

Eroded Big

Eroded Tiny

Eroded Huge

Eroded Massive

Block Small

Block Big

Block Tiny

Block Huge

Block Massive

Siege Rock

Eloi

Moai Sad

Moai Smiling

Moai Funny

Ore Rocks

Small

Medium

Large

Villager / Children

Aztec Female

Aztec Forester Male

Aztec Fisherman Male

Aztec Farmer Male

Aztec Shepherd Male

Aztec Leader Male

Aztec Trader Male

Japanese Female

Japanese Forester Male

Japanese Fisherman Male

Japanese Farmer Male

Japanese Shepherd Male

Japanese Leader Male

Japanese Trader Male

Indigenous Female

Indigenous Forester Male

Indigenous Fisherman Male

Indigenous Farmer Male

Indigenous Shepherd Male

Indigenous Leader Male

Indigenous Trader Male

Greek Female

Greek Forester Male

Greek Fisherman Male

Greek Farmer Male

Greek Shepherd Male

Greek Leader Male

Greek Trader Male

Norse Female

Norse Forester Male

Norse Fisherman Male

Norse Farmer Male

Norse Shepherd Male

Norse Leader Male

Norse Trader Male

Isle Nymph

Sigved

Fenrick

Fenrick Stripped

Fain

Merry man 1

Merry man 2

Merry man 3

Merry man 4

Merry man 5

Merry man 6

Merry man 7

Merry man 8

Merry man 9

Merry man 10

Small Nose Boy

Robin Hood

Dimitrious acolyte

Dimitrious

Euronymous

Aztec Messagener

Aztec Coilbaron

Fell

Greek Jailor

Greek Boatmaster

Young Monk

Taranaga

Tezomoc

Hiroku

Prometheus

Inachus

Egyptian Assassin

Egyptian Slave Disguise

Sanura

Japanese Boat Master

Yuka

Old Monk

Black annis

Egyptian male A

Egyptian male B

Egyptian female A

Egyptian female B

Bazmet

Platoons - 60 Max

Aztec Melee

Aztec Ranged

Japanese Melee

Japanese Ranged

Indigenous Melee

Indigenous Ranged

Greek Melee

Greek Ranged

Norse Melee

Norse Ranged

Aztec Melee

Ghost Army

Marauder

Seven samurai

Monks

Aztec Melee Cinema

Aztec Ranged Cinema

Japanese Melee Reinforcements

Japanese Ranged Reinforcements

Norse Melee Reinforcements

Norse Ranged Reinforcements

Seven Samurai Reinforcements

Monks Reinforcements

Resources

Food

Wood

Ore

Miscellaneous

Dead Tree

Norse Statue

Norse Graveyard

Singing Stone Base

Street Lantern

Bonfire

Norse Tower

Norse Straight Wall

Norse 90 Wall

Teleport

Standalone alter

Toy Ball

Toy Teddy

Toy Doll

Tribute Box

Norse Ship

Greek Ship

Aztec Ship

Japanese Ship

Tombmarkers

Aztec Street Light

Japanese Table

Japanese Ladder

Aztec Barrel 1

Aztec Barrel 2

Greek Barrel 1

Greek Barrel 2

Japanese Barrel 1

Japanese Barrel 2

Norse Barrel 1

Norse Barrel 2

Greek Urn 1

Greek Urn 2

Greek Urn 3

Greek Urn 4

Poo

Nutoil Barrel

Seven Samurai 1

Seven Samurai 2

Seven Samurai 3

Seven Samurai 4

Seven Samurai 5

Seven Samurai 6

Seven Samurai 7

Greek Cart 1

Greek Cart 2

Norse Bench 1

Norse Bench 2

Greek Bench 1

Greek Bench 2

Japanese Bench 1

Japanese Bench 2

Norse Pot 1

Norse Pot 2

Norse Pot 3

Aztec Pot 1

Aztec Pot 2

Aztec Pot 3

Japanese Pot 1

Japanese Pot 2

Japanese Pot 3

Greek Barrow

Greek Wall 3 90

Greek Wall 3 180

Greek Wall 4 90

Greek Wall 4 180

Aztec Wall 1 90

Aztec Wall 1 180

Aztec Wall 4 90

Aztec Wall 4 180

Japanese Wall 1 90

Japanese Wall 1 180

Japanese Wall 4 90

Japanese Wall 4 180

Norse Wall 3 90

Norse Wall 4 180

Norse Wall 4 90

Norse Wall 4 180

Street Light Wood

Street Light Norse

Street Light Brass

Street Light Japanese

Norse Plant 1

Norse Plant 2

Greek Washing Line

Greek Plant 1

Plant Normal

Palm Stump

Palm Spike

Palm Banana

Hay Bale

Siege Weapons - 20 Max

Limitations

If an object is not mentioned above then it is not accepted by the exiting vortex. For example animals,
no where above are animals mentioned. The original plan was to allow animals to be send through, but
as it turns out the code can identify that there is an animal at the vortex but cannot read the sub type.
Since the code cannot determine what type of animal it is, it cannot be recreated on the other end, and
is therefore not accepted by the vortex.

If you are wondering about the ore rocks and why they are not accepted. It is because like the animals
the code cannot read the sub type of the ore rock, therefore it cannot be recreated.

In order to be memory efficient much information has to be left out. For most objects the only thing
recorded is how many of that object were thrown in. Information like size, scale, health, etc... are not
recorded. When that object is recreated size and scale are set to 1, other attributes of an object are left
as default. The recreations are not exactly the same as the object thrown in. On a more positive note,
because only the amount of an object is recorded, you can throw as many of that object into the vortex
as you want!

There is a limitation with trees in BW2, a tree can be placed in the ground or uprooted laying on its
side. But for some strange reason the game identifies uprooted trees as dead trees. The code then cannot
read the sub type of a dead tree, so dead trees cannot be recreated and therefore cannot be accepted. If
the player want to send a tree through it must be place into the ground for the code to read it properly.

Some objects like armies and siege weapons required more information. For armies the number of men,
type, and experience are needed. For siege weapons only experience was needed. Since more
information was required for these objects the way the data is recorded is very different. The number of
platoons you can send through is 60, the maximum number of siege weapons is 20.

Using the Script

In this section, I will explain how to use this vortex script. Like how to add the script into your land’s
code and how to use the interface I have created.

You may have noticed that there are two versions of the vortex script, a debug and a release version.
There really isn’t much difference between them other then the debug script will print out extra
information for the player about the objects being thrown into the vortex. Release is meant for the final
release of a landscape where all the debug stuff is removed and will never be displayed for the player.
Although the disabling of the debug information can be easily done with the debug version.

Adding to Your Project
I will start by assuming that you have already setup a basic scripting project for your landscape. A basic
scripting project contains these files:

1. ChallengeFile.txt - Containing a list of scripts for the compiler to compile
2. MainScript.txt - Contains a basic main script for loading the land like so:

run script Main
begin script Main
start

disable load screen
set fade in time 1
wait until 1 != 1

end script Main
3. A compiler .dat file - This is the compiler for the project

These are the steps for adding the vortex script to your project.
1. Copy the vortex script into your project folder, it can be either debug or the release version
2. Open your challenge file and add the reference to the vortex script. This line must come before

the file you are using to control the vortex.
<Project Folder>/Vortex.txt
Note: Make sure there is a space after the Vortex.txt

3. Compile the code make sure everything works
The vortex script will add around 12000 instructions to the code, yes it is rather large.

There you have it the vortex script is now a part of your project!

Interface
There are a lot of scripts in the vortex file, but only a few of them you need to be know how to use.
This is the complete interface of the vortex script:

1. Vtx_Create_Exiting(xPos, yPos, zPos)
2. Vtx_Create_Entering(xPos, yPos, zPos, playerTown)
3. Vtx_EnableDebug //Debug version only
4. Vtx_DisableDebug //Debug version only
5. Vtx_SetScrollType(Scoll_type)
6. Vtx_SetCloudAttributes(clGeneration, clHeight, clprecipitation, clOvercast)
7. Vtx_SetVortexAttributes(vtxSize, vtxColourChangeEnabled, vtxColour1_R, vtxColour1_G, \

vtxColour1_B, vtxHeight, vtxAngle)

8. vtx_created
9. vtx_debug
10. vtx_scroll_clicked
11. vtx_exporting
12. vtx_export_complete

Creating The Vortex
To create a vortex you need to call one of these two scripts:

1. Vtx_Create_Exiting
2. Vtx_Create_Entering

Exiting will create a vortex which the player can use to throw objects into. It is the vortex which will
allow the player to depart the land and move to the next. The script will create three objects, (1) the
vortex, a white swirling puddle looking thing. (2) a scroll above the vortex, can be bronze, silver, or
gold. (3) a cloud far above the vortex, this cloud is used to create the lightening strikes. This script
takes 3 parameters:

1. xPos : X position of the vortex
2. yPos : Y position of the vortex. The script will auto calculate the land height at the position

provided so this value isn’t very important
3. zPos : Z position of the vortex

Entering is the opposite of exiting, it is the vortex created when entering a new land. It will export all
the objects the player threw in during the previous land. This script only creates a vortex, there is no
need for a scroll or a cloud. This script takes 4 parameters:

1. xPos : X position of the vortex
2. yPos : Y position of the vortex. The script will auto calculate the land height at the position

provided so this value isn’t very important
3. zPos : Z position of the vortex
4. playerTown : The town the player starts with, needed when creating villagers, I need some sort

of town to attach them to.

Examples:

run script Vtx_Create_Exiting(1300, 140, 1400) //Creates an exiting vortex at the location provided

run script Vtx_Create_Entering(1079, 140, 601, get town with id 0)
//Creates an entering vortex at the location provided and the town identified as 0

Both of these script will take care of running in the background the script needed for finding or
exporting objects. Exiting runs two scripts

1. Vtx_Click_Check : Continuously checks if the scroll is clicked
2. Vtx_MainControl_Out : Looks for objects, if one is found saves the data and deletes it

Entering runs one script
1. Vtx_MainControl_In : Exports all the objects saved in the data

There are several variables used in these functions that you need to know about.
1. vtx_created : Set as true once the vortex is created and the scripts are running
2. vtx_scroll_clicked : Set as true when the scroll is clicked by the player
3. vtx_exporting : Set as true while the entering vortex is exporting the objects. It is set back to

false when the exporting is complete
4. vtx_export_complete : Set as true once the entering vortex finishes exporting the objects

Cloud Settings
There is a script you can call to customize the cloud above the vortex.
This script is called: Vtx_SetCloudAttributes

It must be called before the creation of the vortex. It also takes 4 parameters:
1. clGeneration : Sets the speed which the could is generated
2. clHeight : How high up the cloud is above the vortex
3. clprecipitation : Amount of rain, 0 = no rain, 1 = as such rain as possible
4. clOvercast : sets the thickness of the cloud

Example:
run script Vtx_SetCloudAttributes(1, 300, 1, 1)
run script Vtx_Create_Exiting(1300, 140, 1400)

Vortex Settings
There is a script you can call to customize the vortex’s settings.
This script is called: Vtx_SetVortexAttributes

It must be called before the creation of the vortex. It also takes 7 parameters:
1. vtxSize : Sets the scaling of the vortex visual effect, default is 2
2. vtxColourChangeEnabled : Enables custom colouring for the vortex, either 1 or 0
3. vtxColour1_R - vtxColour1_B : Sets the RGB colour of the vortex, the parameter

vtxColourChangeEnabled must be equal to 1 for these to have any effect
4. vtxHeight : How far off the ground the vortex will be
5. vtxAngle : Vortex angle

The angle is only taken into account for an entering vortex. People and armies will head out of the
vortex at this angle. Trees and other objects will be thrown in the opposite direct for the most part. It
was coded this way to stop rocks and other objects from crushing your people and armies.

If you enter a 0 for any parameters then it will not be edited, unless that parameters is part of the colour
change.

Example:
//Will only set the colour to disabled and the angle to -90, size and height are ignored
run script Vtx_SetVortexAttributes(0,0,0,0,0,0,-90)
run script Vtx_Create_Entering(1079, 140, 601, get town with id 0)

Scroll Setting
The script Vtx_SetScrollType will allow you to change the type of scroll that appears above an exiting
vortex. Takes one parameter a value from 1-3:
1 - Bronze scroll
2 - Silver
3 - Gold

It must be called before the creation of the vortex.
Example:
run script Vtx_SetScrollType(1) //Makes scroll bronze
run script Vtx_Create_Exiting(1300, 140, 1400)

Moving to the Next Land
The vortex script doesn’t actual contain the code needed to load the next land it is up to you to code
that using the interface provided by the vortex. After creating an exiting vortex you have to check the
global variable vtx_scroll_clicked. Once that variable is equal to 1 that means the scroll was click and
you can load the next land.

Here is an example:
run script Vtx_SetCloudAttributes(1, 300, 1, 1)
run script Vtx_Create_Exiting(1300, 140, 1400)

wait until (vtx_scroll_clicked == 1)
load map "./Data/Landscape/BW2/Land3549.bwe"

The vortex script will take care of saving the data before setting the value of vtx_scroll_clicked to 1.

Debug Version
The debug version has two extra scripts in the interface.

1. Vtx_EnableDebug
2. Vtx_DisableDebug

These scripts will allow you to display all the debug information whenever you want during runtime.
You simply need to call the scripts.

Example
run script Vtx_EnableDebug
run script Vtx_Create_Exiting(1300, 140, 1400)

Known Bugs
At the current moment there is only 1 known bug. This bug was discovered while coding and attempted
to be fixed but is still a potential issue you may come across.

Global Bug
This bug has to do with the internal workings of the persistent data. We found during testing that
persistent data is global across all lands, saves, and profiles! In other words the set of data where the
information is stored is the same for all lands, saves, and profiles. This has been deemed a very serious
issue that we cannot over come. It has to do with the way lion head coded the persistent data.

Let me give you an example of how a player could take advantage of this bug. Lets say the player is
playing through a series of 4 lands. Each land has the vortex script and uses it. If the player places lots
of objects into the vortex on land 2, clicks the scroll going to land 3. Before the vortex begins exporting
on land 3 the player exits to the main menu and loads a save on land 4, then presses restart land. Land 4
would then load in all the objects the player through in the vortex on land 2! because that was the last
set of data saved to the persistent data.

The same issue exists between different players. If player 1 departs a land the persistent data would be
over written, and if player 2 restarts their land then they’d get all the stuff player 1 had placed in the
vortex in their game.

The first version of the vortex project was designed where it simply wrote directly to the persistent
data, for example if you placed a tree by the vortex the script would just update the persistent data
directly. When this bug was discovered, the project was very nearly scrapped. This bug was truly
horrible for the first version. Imagine you beat a land and the vortex appeared, you began placing
everything you needed for the next land into the vortex. Before leaving the land you had to leave your
computer and do something else, you saved the game and exited. While you were gone your brother
got on and loaded his profile and began playing, if the vortex was to appear for him it would overwrite
all the objects you placed in the vortex in your game!

You can see why this project was nearly scrapped due to the globalization of persistent data. But we
came up with a partial solution. The biggest issue with the first version is that the data could be
overwritten at any point during the vortex process. To fix this the code was rewritten to record
everything in an array. Then when the scroll is click the array is copied into the persistent data. The
next land then copies the persistent data straight into the array and all the exporting and object
recreation works from the array. This code design means the data is only vulnerable after the scroll is
click and before the next land reads the data into the array. Thus the only way the player can get his
data overwritten and get the wrong objects is if (1) They loaded a save where the game hadn’t copied
the data into the array yet, (2) when restarting the land.

The probability of the player creating a save before the data is copied is extremely low once you take in
a count the need for a land intro cut scene.

There is still the possibility that a player could get the wrong objects due to it being overwritten, but
that risk (Thanks to the array) is has been deemed acceptable.

Conclusion
There you have it, everything you need to know about how to use this vortex. I hope you don’t run into
any issues.

If you do find any issues or have and suggestions for things I should change feel free to contact me on
bwFiles:
http://www.bwfiles.com/forum/index.php?action=profile

or message me on discord.

	Introduction
	Features
	Object Categories
	Limitations

	Using the Script
	Adding to Your Project
	Interface
	Creating The Vortex
	Cloud Settings
	Vortex Settings
	Scroll Setting
	Moving to the Next Land
	Debug Version

	Known Bugs
	Global Bug

	Conclusion

